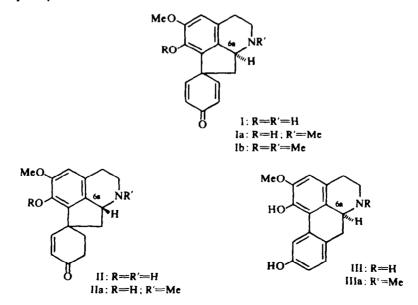
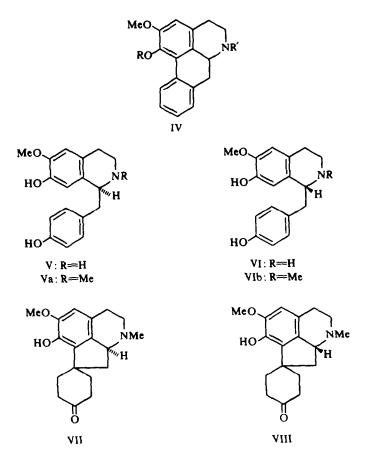
ABSOLUTE CONFIGURATION OF CROTSPARINE, CROTSPARININE AND SPARSIFLORINE*

D. S. BHAKUNI, S. SATISH and M. M. DHAR


Central Drug Research Institute. Lucknow, India

(Received in the UK 12 April 1972; accepted for publication 26 May 1972)


Abstract- Absolute configurations of crotsparine. crotsparinine and sparsiflorine have been determined.

PROAPORPHINES crotsparine (1). N-methylcrotsparine (Ia) and N.O-dimethylcrotsparine (Ia), dihydroproaporphines crotsparine (II), and N-methylcrotsparine (IIa), and the aporphine sparisflorine (III), have been characterized in extracts from *Croton sparsiflorus* Morong.¹ Proaporphines are important biogenetic precursors of aporphines (III, IV), and the latter are obtained chemically from proaporphines by the dienone-phenol or dienol-benzene rearrangements.³ The absolute configuration of these dienone bases, is, therefore, of importance to biosynthetic and chemical correlation studies.

The configuration of proaporphines has been assigned with the aid of CD data,⁴ by comparison of the optical rotations of dienone bases and the corresponding aporphines¹ and by degradation procedure.⁵ This paper reports assignment of absolute configuration of *Croton sparsiflorus* proaporphines by direct synthesis from 1-benzylisoquinolines.

* Communication No. 1721 from the Central Drug Research Institute.

 (\pm) -O,O'-Dibenzylcoclaurine was prepared by the usual route.^{6,7} Resolution of the racemic mixture with (+)-di-p-toluoyl-l-tartaric and (-)-di-p-toluoyl-d-tartaric acids separately furnished (+) and (-)-O-O'-dibenzylcoclaurine. Acid catalysed hydrogenolysis finally yielded (-)- and (+)-coclaurine (V and VI) respectively of known absolute configuration.⁸

 (\pm) -N-Methylcoclaurine, (\pm) -coclaurine, (-)-coclaurine and (+)-coclaurine were then separately labelled with tritium ortho and para to OH groups.⁹ Tritium labelled (\pm) -coclaurine, (+)- and (-)-coclaurines were then separately converted into the corresponding N-Me derivatives and then oxidised with potassium ferricyanide in a two phase system.¹⁰ The radiochemical yields of N-methylcrotsparine, corrected for obligatory loss of tritium, are recorded in Table 1.

Coclaurine derivative	% Yield of N-methylcrotsparine
(+)-[Aryl- ³ H]-N-Methylcoclaurine	2.10
(±)-[Aryl- ³ H]-Coclaurine	2.00
(+)-[Aryl- ³ H]-Coclaurine	0.006
(-)-[Aryl- ³ H]-Coclaurine	3.90

4581

N-Methylcrotsparine (Ia) is obtained only from (\pm) - and (-)-coclaurine, the absolute configuration of the base, is, therefore, identical to that of (-)-coclaurine (V). Acid catalysed isomerisation of N-methylcrotsparine (Ia) yields N-methylsparsiflorine (IIIa) which is also obtained by N-methylation of sparsiflorine (III). Catalytic reduction of N-methylcrotsparinine yields N-methyldihydrocrotsparinine (VIII). N-methyldihydrocrotsparinine and N-methyltetrahydrocrotsparine are enantiomeric. The absolute configuration of crotsparine (I) and sparsiflorine (IIIa) at position 6a is therefore L or (S) and that of crotsparinine (II) is D or (R).

EXPERIMENTAL

Optical rotations have been determined in MeOH unless indicated. OO'-Dibenzylcoclaurine was prepared by reduction of the corresponding dihydroisoquinoline with NaBH₄ in MeOH at 0° . OO'-dibenzylcoclaurine crystallized from EtOH as plates, m.p. 88–89° (lit.⁸ 87°).

Resolution of O,O'-dibenzylcoclaurine

The salt of (\pm) -O,O'-dibenzylcoclaurine (1.74 g) and (\pm) -di-*p*-tolyoyl-*l*-tartaric acid (1.43 g) was fractionally crystallized from EtOH-Et₂O, EtOH and MeOH to give needles (1.4 g) m.p.•155-157°: $[\alpha]_D$ 85° (c, 1.0). This salt was treated with 4N NaOH and the liberated (+)-O,O'-dibenzylcoclaurine purified by chromatography over Al₂O₃. It crystallized from EtOH as plates, m.p. 88-89°, $[\alpha]_D$ 15° (c, 0.5): -25° (c, 0.5 in CHCl₃).

(-)-Coclaurine hydrochloride.⁸ (+)-O,O'-Dibenzylcoclaurine was treated with 36% HCl in EtOH at 100° for $1\frac{1}{2}$ hr. The resulting (-)-coclaurine HCl crystallized from EtOH as needles, m.p. 165-166°. After drying at 100° in vacuo had m.p. 263-264°, $[\alpha]_{\rm D} - 13^{\circ}$ (c, 1·2). The free base had $[\alpha]_{\rm D} - 17$ (c, 1·0).

(-)-O,O'-Dibenzylcoclaurine. O,O'-Dibenzylcoclaurine (0.87 g) enriched with the (-)-enantiomer was treated with (-)-di-p-toluoyl-d-tartaric acid (0.72 g) and was fractionally crystallized from EtOH-Et₂O as plates m.p. $87-88^{\circ}$, $[\alpha]_D - 15^{\circ}$ (c, 0.5): -20° (c, 0.5 in CHCl₃).

(+)-Coclaurine hydrochloride.⁸ (-)-O,O'-Dibenzylcoclaurine was hydrogenolysed with 35% HCl in the usual way to give (+)-coclaurine HCl, which crystallized from EtOH as needles, m.p. 166–169°. After drying at 100° in vacuo had m.p. 261–263°, $[\alpha]_D - 13^\circ$ (c, 1·2).

 (\pm) -[Aryl-³H]-N-methylcoclaurine hydrochloride. A mixture of (\pm) -N-methylcoclaurine HCl (100 mg), t-BuOK (150 mg) and T₂O (0.35 ml) were sealed in a tube under N₂ and heated at 100° for 110 hr. The mixture was then diluted with H₂O (1.5 ml) and NH₄Cl added. The ppt formed was centrifuged, washed with water and extracted with CHCl₃ (3 × 4 ml). After removal of solvent, the residue from the CHCl₃ extract was treated with MeOH-HCl to give [3', 5', 8-³H]-N-methylcoclaurine HCl (60 mg), free base m.p. 176°. The base HCl was crystallized from MeOH to a constant activity. The sample of (\pm) -[Aryl-³H]-Nmethylcoclaurine HCl gave 3.04×10^6 dps/mg.

(\pm)-[Aryl- ³H]-doclaurine hydrochloride. (\pm)-coclaurine HCl (110 mg) was heated with t-BuOK (150 mg) in T₂O (0.45 m]) for 100 hr. The resulting mixture was worked up as above to give [3', 5', 8- ³H]-coclaourine HCl (65 mg) m.p. 256-258°, which gave 3.7 × 10⁶ dps/mg.

 $(-)-[Aryl- {}^{3}H]-coclaurine hydrochloride.$ (-)-Coclaurine HCl (80 mg), T₂O (0.4 ml) and t-BuOK (140 mg) were heated for 96 hr. The resulting mixture was worked up to give [3', 5', 8- ${}^{3}H$]-coclaurine HCl (55 mg), giving 2.7 × 10⁶ dps/mg.

(+)-[Aryl- ³H]-coclaurine hydrochloride. (+)-Coclaurine HCl (85 mg), T_2O (0.4 ml) and t-BuOK (150 mg) were heated for 100 hr. The resulting mixture on working up afforded [3', 5', 8- ³H]-coclaurine hydrochloride (45 mg), which gave 3.9×10^6 dps/mg.

Oxidation of (\pm) -[aryl-³H]-N-methylcoclaurine. (\pm) -[Aryl- ³H]-N-methylcoclaurine (5 mg), diluted with inactive (\pm) -N-methylcoclaurine (47 mg) in 8% NH₄AcO (2.5 ml), was added dropwise to a mixture of K₃Fe(CN)₆ (300 mg), 28% NH₄OH (0.5 ml) and CHCl₃ (20 ml) at 0° with vigorous stirring under N₂. Stirring was continued for 3 hr. N-methylcrotsparine (40 mg) was then added, the CHCl₃ layer collected and the aqueous layer extracted with CHCl₃ (3 × 25 ml). The combined CHCl₃ extract was washed with sat NaCl aq, dried (K₂CO₃) and solvent removed. The product was chromatographed over Al₂O₃ (grade III). Elution with EtOAc-C₆H₆ (1:9) gave radioactive N-methylcrotsparine (18 mg). The radiochemical yield of N-methylcrotsparine was 2·10%. Oxidation of (\pm) -[aryl- ³H]-coclaurine. A mixture of (\pm) - aryl-³H-coclaurine (15.4 mg) and (\pm) -N-methylcoclaurine (30 mg) was treated with HCHO/HCOOH to give (\pm) -[aryl-³H]-N-methylcoclaurine. This compound was then dissolved in 8% NH₄AcO (3 ml) and oxidized with K₃Fe(CN)₆ (250 mg) in 28% NH₄OH (0.5 ml) and CHCl₃ (20 ml) at 0° under N₂. N-Methylcrotsparine (45 mg) was added and reisolated. The radiochemical yield of N-methylcrotsparine was 2.00%.

Oxidation of (+)- aryl-³H-N-methylcoclaurine. (-)- Aryl-³H-coclaurine (6.4 mg), diluted with (\pm) -N-methylcoclaurine (43 mg), was treated with HCHO/HCOOH and the (+)-[aryl-³H]-N-methylcoclaurine thus obtained was oxidized with K₃Fe(CN)₆ (300 mg) under identical conditions as above. Inactive N-methylcrotsparine (45 mg) was added at the end of the reaction and labelled N-methylcrotsparine (21 mg) was isolated. Radiochemical yield of N-methylcrotsparine was 3.90%.

Oxidation of (-)- aryl-³H-N-methylcoclaurine. (+)- aryl-³H-coclaurine (15.7 mg) diluted with (\pm) -N-methylcoclaurine (45 mg) were treated with HCHO/HCOOH to give (-)-[aryl-³H]-N-methylcoclaurine. This was dissolved in 8% NH₄AcO (0.5 ml) and oxidized with K₃Fe(CN)₆ as above. N-methylcrotsparine (33 mg) was added at the end of the reaction and labelled N-methylcrotsparine (20 mg) was isolated. The radiochemical yield of N-methylcrotsparine was only 0.006%.

N-Methyltetrahydrocrotsparine (VII). N-Methylcrotsparine (100 mg, $[\alpha]_D - 115^\circ$) in AcOH (10 ml) was hydrogenated over PtO₂ (70 mg). The crude product was chromatographed over Al₂O₃ (grade III) to give N-methyltetrahydrocrotsparine as plates (80 mg) from C₆H₆ m.p. 113-114°, $[\alpha]_D - 60^\circ$ (c, 0.5): v_{max}^{MBZ} 2930 (OH) and 1720 cm⁻¹ (C=O).

N-Methyldihydrocrotsparinine (VIII). N-Methylcrotsparinine (100 mg) $[\alpha]_D 240^\circ$ (c, 1-0, in CHCl₃) was hydrogenated over PtO₂ (60 mg) in AcOH (10 ml) to give N-methyldihydrocrotsparinine (75 mg) m.p. 114-115°, $[\alpha]_D + 70^\circ$ (c, 0-88). This compound was enantiomeric with N-methyltetrahydrocrotsparine: both compounds had identical m.ps. and IR, UV and NMR spectra.

REFERENCES

- ¹ D. S. Bhakuni, S. Satish and M. M. Dhar, Phytochem 9, 2573 (1970)
- ² D. H. R. Barton, and T. Cohen, Festschrift A. Stoll, p. 117. Birkhanser, Banse (1957)
- ³ K. L. Stuart and M. P. Cava, Chem Rev. 68, 321 (1968)
- ⁴ G. Snatzka and G. Wollenberg, J. Chem. Soc. (C), 1981 (1966)
- ⁵ M. P. Cava, K. Nomura, R. H. Schlessinger and K. T. Buck, Chem. & Ind. 282 (1964)
- ⁶ M. Tomita, K. Nakaguchi, and S. Takagi, J. Pharm. Soc. Japan 71 1046 (1951)
- ⁷ H. Yamaguchi and K. Nakano, Ibid. 79, 1106 (1959)
- ⁸ D. H. R. Barton, D. S. Bhakuni, G. M. Chapman and G. W. Kirby, J. Chem. Soc. (C), 1295 (1967)
- ⁹ G. W. Kirby and L. Ogunkoya, *Ibid.* 6914(1965)
- ¹⁰ T. Kametani and H. Yogi, *Ibid.* (C), 2182 (1967)
- ⁴ D. H. R. Barton, and T. Cohen, Festschrift A. Stoll, p. 117. Birknanser, Banse (1957)
- ³ K. L. Stuart and M. P. Cava, Chem Rev. 68, 321 (1968)
- ⁴ G. Snatzka and G. Wollenberg, J. Chem. Soc. (C), 1981 (1966)
- ⁵ M. P. Cava, K. Nomura, R. H. Schlessinger and K. T. Buck, Chem. & Ind. 282 (1964)
- ⁶ M. Tomita, K. Nakaguchi, and S. Takagi, J. Pharm. Soc. Japan 71 1046 (1951)
- ⁷ H. Yamaguchi and K. Nakano, Ibid. 79, 1106 (1959)
- ⁸ D. H. R. Barton, D. S. Bhakuni, G. M. Chapman and G. W. Kirby, J. Chem. Soc. (C), 1295 (1967)
- ⁹ G. W. Kirby and L. Ogunkoya, Ibid. 6914(1965)
- ¹⁰ T. Kametani and H. Yogi, *Ibid.* (C), 2182 (1967)